
Detecting Injection Attacks using
Long Short Term Memory

Ioana-Crinela Potinteu, Robert Varga
Technical University of Cluj-Napoca

Computer Science Department
Email: crinela.potinteu@student.utcluj.ro, robert.varga@cs.utcluj.ro

Abstract—Nowadays, the rise of cybercrime requires the com-
panies to empower their business with innovative defensive
mechanisms. This article focuses on the security of APIs and
it proposes two methods to defend them against different types
of injection attacks. The analyzed APIs belong to a large scale
company and they respond to more than 10 000 requests per
second, coming from applications that belong to totally different
business domains. At the foundation of these solutions is the usage
of the powerful Long Short Term Memory network and two
different tokenization strategies: a word-level and a character-
level. The solutions outperform the current model used by the
company and they are able to detect an injection attack tentative
sent by a client with 96% accuracy, in comparison with the model
employed, which only achieves 92% accuracy.

I. INTRODUCTION

Companies are paying more and more attention to Cyber
Security and one reason is the fact that their reputation will
be irreparably damaged by any data leak. Laws that address
hacking were promulgated in many countries around the
world. For example, in UK the punishments include prison
sentences from 1 to 20 years [1], but the attackers do not
seem to be scared. It is the job of software developers to take
into consideration aspects related to security from the design
phase of an application.

Even if many security best practices are respected, the
hackers are searching for more innovative and unexpected
attacks and this forces the developers to also think about
creative and effective defense mechanisms [2]. This work
proposes new ways to protect APIs (Application Programming
Interfaces). The APIs that were analyzed are designed ac-
cording to REST principles. REST is an architectural style
for distributed systems that is very popular for designing
web services [3]. The proposed solutions do not use any
particularities of this architectural style, so they should be
suitable for any normal URL.

An API running on the server will respond to the requests
of different clients. The clients can be mobile, web or desk-
top applications, running on different operating systems or
browsers. The defending solutions presented in this article
are designed for the case when the communication between
the client and the server is done though HTTP (Hyper Text
Transfer Protocol). Web services are built around the concept
of resource [4]. Any piece of information that can be uniquely
identified is a resource, for example an image. The identifier
is called URL (Uniform Resource Locator).

Fig. 1. Possible use case for malicious web request detection

The clients of a web API send an HTTP request message
to retrieve a resource, this message is mandatory to contain
the URL of that particular resource. The API responds with
a status code that indicates that the resource was successfully
accessed or it provides information about the error that oc-
curred. If it is the case the resource is sent to the client.

In this context we analyze and propose two different meth-
ods that are able to automatically detect malicious web request
sent to an HTTP API. Malicious web requests are those that
contain in the URL parameters or code sequences that have
bad intentions. Among the bad intentions we mention obtain-
ing confidential data or modifying a table from a database
without the required permissions. This type of attack against
a web API is called injection attack.

A possible use case of the detection models that will be
presented can be seen in Figure 1. A client application sends
to the API a request to retrieve or to save resources. Firstly,
the request passes through a firewall. The firewall analyses all
the data packages that form the request and based on a set of
rules it can block the traffic from suspicious sources.

In order to enhance the security of a web API, a rule aimed
to verify if the IP address of the source belongs to a blacklist,
can be added to the firewall, initially the blacklist is empty.
Every time the Detection Model receives a request that will be
classified as malicious, it will add the source IP to the blacklist
and it will return the result to the API. The API processes
only the requests that are classified as being normal, for the
malicious requests it returns an error message.

978-1-7281-9080-8/20/$31.00 c©2020 IEEE

The rest of the paper is organized as follows. Section II
surveys the related work about convolutional neural networks
used for anomaly detection. Section III presents two ap-
proaches to build training, validation and test datasets, Section
IV details the proposed architecture, Section V shows the re-
sults and Section VI summarizes out methods and enumerates
possible further developments.

II. RELATED WORK

This section presents anomaly detection methods that use
log files written by programs in execution. Logs are similar to
URLs, they are unstructured data, their format and semantics
vary from one system to another. The work [5] presents
an architecture of a neural network that detects anomalies
from logs. The authors treat logs as natural language and
apply classification methods specific to this domain. A script
was used to build training and validation datasets. The script
executed the following tasks: create, delete, start, stop, pause
and resume virtual machines using OpenStack in CloudLab.

All the log entries were parsed and for each a key was
extracted, called log key. The log key of a log entry e is the
constant string k from the print statement that generated it. For
example, the log key k for the log entry e = ”Took 10 seconds
to build instance.” is k = Took * seconds to build instance.,
which is the constant string from the statement: print(”Took
%f seconds to build instance.”, t). It can be noticed that the
parameters are abstracted as asterisks.

A tuple is obtained in the form of (key, parameter value
vector). The log keys sequence is used to train a log key
anomaly detection model and the sequence of parameter value
vectors is used to train a model that decides if the parameter
values are normal for this log entry. Both detection models use
a Long Short Term Memory (LSTM) network. Its architecture
was introduced in [6], it is a subclass of Recurrent Neural
Networks, which are networks designed to classify sequences
of data. LSTM can be imagined as a chain of multiple copies
of the same network and each passing information to the next
one.

The input of the LSTM network used in [5] is a list of keys
or parameter value vectors that correspond to a window of
recent consecutive log entries. One LSTM network is trained
to maximize the probability of having key ki as the next
key. The other LSTM network is used to minimize the error
between a parameter value vector that was predicted using the
other vectors from the window and the one that was extracted
for that particular key. This solution achieves very good values
for F1-score when the code running on the monitored system
is not changed. If the code is updated and new sequences of
log entries appear, the value of F1-score is only 28.0.

The article [7] presents an architecture to detect anomalies
in system logs. For training and validation the authors used
the HDFS log dataset, that was proposed in [8]. The logs were
parsed in the same way as in the previous article, but only the
keys were kept. They have designed a neural network with
the following architecture: an Embedding layer, followed by
3 Convolutional 1D layers applied in parallel to the output

of the Embedding layer, the output of these three layers
is concatenated and sent to the next layers: Dropout, Max-
pooling and at the end a Fully-connected layer with softmax
activation.

The Embedding layer maps a key to a dense vector of float
values. This dense vectors are learned during the training of
the neural network. Here it can be noticed that problems also
appear when the code of the monitored system is updated and
new log keys are produced. All the new log keys that were
not seen during training are mapped to the same dense vector,
assigned to unknown log keys. The authors presented the result
of F1-score only when the code was not changed and the value
is very high: 98.5±0014.

The paper [9] classifies files containing log entries as
belonging to programs that run normally, or programs that
encountered different anomalies during execution. To obtain
the dataset for training and validation the authors use log files
from systems that were monitored and they experienced only
normal behaviors and also they have injected faults to obtain
anomalous behaviors.

A sequence of preprocessing operations were applied to
all the labeled log files. Firstly, all the non alphanumeric
characters were removed. Secondly, the algorithm word2vec
presented in [10] was used to map each word from a log entry
to a dense vector of float values. This vector represents the
position of the word in an Euclidean space. After this step all
log entries become lists of vectors. By computing the average
of all the vectors that form a log entry it is obtained a single
vector that represents the position in the Euclidean space for
the entry. Finally, the position of the log file is obtained by
computing the average of the vectors computed for each entry.

The vector computed for each file, together with the associ-
ated label were used to train a Convolutional Neural Network
and other two classifiers: Naive Bayes and Random Forest.
The metric used for comparison was AUC (Area Under the
Curve). For the Convolutional Neural Network and Random
Forest the value of AUC was 95% and for Naive Bayes the
value was 77%.

III. DATASET CONSTRUCTION

The datasets used to train, validate and test the model were
built using two files received from a team of Cyber Security
experts. One file contains normal URLs that are expected to
be received by an API. The other file contains URLs that can
be used by an attacker to perform an injection attack. All
the requests were made to multiple APIs that we intend to
protect using the resulted detection models. The total number
of labeled URLs was 4 705 156. There were 3 466 443
(73.67%) normal URLs and 1 238 713 (26.33%) malicious
URLs. A percentage of 80% from these URLs was used to
train the neural network that will be detailed in the next
section, while the rest was used as a validation dataset. The
test dataset was received in a separate file from the Cyber
Security experts, it contains a total of 10 000 URLs, together
with the corresponding labels, there are 1000 malicious URLs
and the rest of them are normal.

Two different strategies to build a dataset were explored.
The first one converts a URL into a format similar to natural
language and each URL will become a list of words. The
second strategy will not apply any preprocessing operation,
the raw URL will just be separated into the list of characters
that it contains.

A. Convert a URL to natural language

In this paper we propose an original method to convert a
URL into a format similar to natural language. The method
was inspired by the algorithm to extract a key from a log entry,
proposed in [5]. The operations required by this transformation
are simple for a normal URL, but for a malicious one they
depend on the type of injection attack that they contain. The
following list contains all the injection attacks that we aim to
detect together with the operations that will be performed to
the URL:

• SQL Injection: this type of attack tries to modify the
query that will be executed by the database engine to
retrieve the requested information. For example, in a web
application that sells products from different categories,
the URL to see the category navigation can look like this:
/products?category=navigation

If the application does not have any mechanism to protect
against this type of attacks, then the attacker can modify
the URL to obtain more information than allowed:
/products?category=navigation’+OR+1=1

Special characters, like ’ in this case, appear frequently
in malicious URLs. In a traditional natural language
processing application they are removed [11], but in
this case their presence helps the network to detect this
attack. To defend against this type of attack the special
characters can be left unchanged or they can be replaced
by tokens. They were replaced by tokens as the idea of
this strategy is to convert a URL to a format similar to
natural language, the next presented strategy leaves them
unchanged. The URL becomes:
/products?category=navigation tick
plus OR plus equality

• Command Injection: aims to execute different operating
system commands on the server where the API is running.
Typically the APIs that need to call shell commands to
retrieve some data are vulnerable to this type of attack.
Similar to the case of SQL injection attacks, the typical
characters used are: |, ;, // to insert and separate the
commands into the shell. These special characters should
be replaced with tokens, for example: pipe, semicolon and
slashslash

• Cross Site Scripting (XSS): is a vulnerability that allows
an attacker to manipulate a vulnerable web site and
return malicious JavaScript content to regular users. For
example, a forum that receives messages from the users
and displays them to the other participants, can use simple
HTML elements:
<p>Message text</p>

An attacker can send the following message:
<p><script>alert(1)</script></p>

This is a harmless attack, it just displays a pop up with the
message 1, but these type of attacks can be dangerous, in
worst cases the attacker can control the browser remotely.
As it can be noticed, each special character <, >, (,), [,
], {, } must be replaced with a token.

• Path Traversal: is used to access files that are saved
on the server where the API is running. These files can
contain sensitive information. For example, if the path of
an image that should be retrieved by the API is sent into
the URL, the attacker can change it to look like this:
/resources/images/../../../etc/passwd

The characters ../ are used to access the parent directory
and they will be replaced with the token dotdot. This
request tries to read the file passwd, for Linux systems it
contains data about the users of the system.

• Double encoding: in URL some characters have a special
role, for example & separates the query parameters. Also,
a URL can contain only letters from the US-ASCII set.
To send characters outside of this set they have to be
encoded using a technique called URL Encoding. This
technique converts the special characters to a universal
format accepted by all the browsers and web servers. By
default, the browsers and web servers decode the URL
only once. Also, they may have some filters to protect
against Path Traversal and Cross site scripting attacks.
These filters detect the sequence ../ , the characters <, >,
(,), [,], {, } or their codification. To bypass these filters
the attackers will double encode the special characters.
The backend platform, that knows how to handle encoded
data, performs the second decoding process and this
platform might not have implemented the corresponding
security checks. To convert a URL to natural language
the first step will be to double decode it.

Previously we presented operations that will be applied to
URLs depending on the different types of injection attacks that
we aim to detect. In the following a list of general operations
that can be performed is proposed:

1) ID abstractization. All the IDs that uniquely identify
a resource should be abstracted with the term identifier.
The neural network just needs to learn that some URLs
require an ID and it should not learn all the IDs.

2) Timestamp abstractization. All the timestamps should
be abstracted with the term timestamp, regardless of their
format.

3) Abstract Click Identifiers. For example, Google Click
Identifier or Facebook Click Identifier should be re-
placed with the tokens fbclib, glid.

4) Abstract the names of the files. Client applications
send many requests for different files. The neural net-
work should learn how the request for an image is made,
regardless of its name or extension. To perform this
operation in the URL are identified the names of the
files and they are replaced with their type, for example:

TABLE I
DETAILS OF THE DATASETS

Dataset Total Malicious Normal
Raw Train 3 764 124 991 093 (26%) 2 773 031 (74%)

Raw Validation 941 032 247 773 (26%) 693 259 (74%)

Raw Test 10 000 1 000 (10%) 9 000 (90%)

NLP Train 1 161 548 243 040 (21%) 918 509 (79%)

NLP Validation 290 388 58 077 (21%) 232 310 (79%)

NLP Test 10 000 1 000 (10%) 9 000 (90%)

/birdseye/usgs/drg_24_n4870-3m.jpg
/birdseye/usgs/image

5) Abstract the properties of the images. If in the URL
is sent the dimension for the requested image, it should
be abstracted by the term dimension.

6) Eliminate the numbers. If in the URL numerical pa-
rameters are sent, for example startPageIndex, pageSize,
they should be eliminated.

7) Replace the characters /, , =, &, :, ?, - with space.
These characters are used to separate the information
from the URL, after this operation the URL will become
a list of words.

8) Convert upper case to lower case. This operation is
very used to preprocess natural language.

B. Datasets summary

We have built 6 datasets from the files with labeled URLs,
they can be seen in Table I. All the datasets whose name
starts with Raw contain URLs that were not preprocessed. The
ones whose name starts with NLP were converted to a format
similar to natural language by using all the preprocessing
operations that were presented above. Note that after the pre-
processing operations, many duplicate URLs were generated
and they were deleted.

C. Imbalanced data

Looking at Table I it can be noticed that the datasets are
highly imbalanced. The number of normal URLs greatly out-
numbers the number of malicious ones. The solution proposed
in [10] was used to solve the problem. Different class weights
were assigned to indicate that an error on a malicious URL is
7 times as expensive as an error on a normal URL.

D. Convert URLs to numerical form

Machine learning algorithms are able to work only with
numerical values. The next step in the dataset construction is
to convert all the URLs from each dataset to a sequence of
numbers.

1) Word level codification: For the NLP datasets each word
was mapped to an ID. The total number of unique words
found into the dataset NLP Train was 316 171. The APIs
are used in production for a wide range of client applications.
One of them is a large electronics shopping website. The high
number of unique words can be explained by the diversity
of the web requests that the APIs serve and also by the fact

that some of the client applications are translated in almost 80
languages. We have chosen the first 99 999 words, ordered by
their frequency in the dataset, to represent the vocabulary of
known words by the neural network. Up to this number the
words had a frequency greater or equal to 2, after this number
the words occurred only once into the dataset. Each word from
the vocabulary was mapped to an integer (ID) by using a very
simple algorithm.

The number of occurrences in the training set was counted
for each word and the mapping is done using these values.
The most frequent word was mapped to the lowest ID, starting
from the value 2, ID 1 is reserved to replace words that are not
part of the vocabulary. The second most frequent word was
mapped to value 3 and this procedure continued until all the
words from the vocabulary were mapped to IDs. All 99 999
words that form the vocabulary were mapped to IDs between
2 and 100 000. After building the vocabulary and determining
the ID for each word and also setting an ID to represent all
the words that do not belong to the vocabulary, all three NLP
datasets were converted to a numerical form, that can be sent
as input to a neural network.

2) Character level codification: For the Raw datasets each
character was mapped to an ID. All the unique characters
found into the dataset Raw Train represent the vocabulary.
There were found 67 distinct characters and they were mapped
to an ID based on their number of occurrences into the dataset.
The most frequent character was mapped to 2, the second most
most frequent was mapped to 3 and so on. All 67 characters
were mapped to an integer number between 2 and 68, the
ID 1 is used to map all the characters that do not belong
to the vocabulary. All three Raw datasets were converted to a
numerical form using the vocabulary and the mapping strategy.

IV. PROPOSED NETWORK ARCHITECTURE

In [5] LSTM is used to detect anomalies and the log keys
represent the classes. In [7] and [9] a custom neural network
is built and the log keys are the input of the first layer. In
[7] the first layer is of type Embedding. Figure 2 depicts an
architecture that combines the ideas from the analyzed articles
and this is the proposed architecture to detect malicious web
requests. The architecture is the same as the one presented in
[12] to classify a movie review as being positive or negative.
The only difference consists in the choice of the hyperparam-
eters, they must be suitable for a significantly larger dataset.
The datasets NLP Train and Raw Train were used to train two
neural networks having the presented architecture, only some
values of the hyperparameters were different. We explore two
distinct ways of using LSTM to detect malicious web requests.

A. Embedding layer

This is the first layer of the neural network, it is used to
convert each word/character ID into an embedding. Embed-
dings are defined in [13] as being trainable dense vectors that
represent the position of a word in an Euclidean space, the
dimension of this space is a hyperparameter. This layer takes
as input a sequence of IDs that encode a URL (the IDs can

Fig. 2. Proposed network architecture

Fig. 3. Embedding layer overview

represent words or characters), then the layer will output a
matrix containing the vectors associated to each ID. All the
trainable vectors are saved in an embedding matrix.

The mapping between the IDs and the vectors is done very
easily, the ID is used as index in the embedding matrix. Figure
3 illustrates the usage of this layer. The URL is encoded
at word level and the dimension of the Euclidean space is
3. This layer was created to capture semantic similarities
between words. The words that have similar meanings or that
are used in related contexts should have close representations
and the same reasoning applies to characters. The ID based
codification does not provide information to decide if two
words/characters are used in similar contexts.

B. Spatial dropout 1D layer

Dropout was introduced in [14] and is one of the most
used regularization techniques in deep learning. This technique
drops a neuron with probability p during training time. Spatial
dropout 1D is based on this idea, but it drops with probability
p every column from the embedding matrix. To drop a column
means to set all its elements to 0. This layer is recommended to

Fig. 4. LSTM module overview

be used after the Embedding layer, to decrease the dependency
between the elements of dense vectors.

C. LSTM

Inside the proposed architecture the LSTM network can
be seen as a layer that takes the output from the Spatial
Dropout 1D layer, it performs the computations required for
each embedding and then it sends the final output to the next
layer. An LSTM network is able to remember information over
arbitrary periods, its memory is called cell state. The network
contains the following components: the cell state and 3 gates
that are used to remove or add information to this state. The
gates use the sigmoid function, that returns values between 0
and 1, to control how much from the output of these gates is
used for the next computations. The three gates are: forget -
decides what information should be eliminated from the cell
state; input - selects what information will be added to the
cell state; output - computes the final output of the module
for each time step. The total number of time steps represents
the length of the input sequence.

D. Fully Connected layer with sigmoid activation

This type of layer is often placed at the end of the deep
learning architectures to obtain the prediction result. The input
of this layer is the result of LSTM module, which is a vector
of real values, the features that were learned from a URL.
Using these features the Fully Connected layer with sigmoid
activation returns the probability of a URL to be malicious or
not.

E. The choice of hyperparameters

For some of the hyperparameters we have used the values
recommended in [12], for others we have analyzed the datasets
and for the rest we tried multiple values and choose based on
the accuracy and the time needed to train and to make a predic-
tion. The optimization algorithm was Adam, with the following
parameters: learning rate = 1e-3, beta1 = 0.9, beta2 = 0.999
and epsilon = 1e-7. According to the recommendations from
[12], the chosen loss function was binary crossentropy and
we take into consideration the weights for each class. The loss
function for the i-th instance from the batch has the following
formula:

TABLE II
INPUT AND OUTPUT SHAPES OF THE LAYERS

Layer NLP Model Raw Model

Embedding
In: (2000, 250) In: (2000, 1000)

Out: (2000, 250, 128) Out: (2000, 1000, 64)

SpatialDropout1D
In: (2000, 250, 128) In: (2000, 1000, 64)

Out: (2000, 250, 128) Out: (2000, 1000, 64)

LSTM
In: (2000, 250, 128) In: (2000, 1000, 64)

Out: (2000, 64) Out: (2000, 64)

FullyConnected
In: (2000, 64) In: (2000, 64)
Out: (2000, 1) Out: (2000, 1)

Li = w(yi) ∗ (yi ∗ log(p(yi))+ (1− yi) ∗ log(1− p(yi)))
(1)

where w is the weight for class 0 and 1, respectively; yi is
the label of the instance i (0 for normal and 1 for malicious)
and p(yi) is the probability of being malicious predicted by
the model in the case of instance i.

The TensorFlow library was used for implementation. Ten-
sorFlow builds static graphs for the neural networks, as a
consequence the dimension of the input data needs to be
known when the graph is built. The URLs from all the datasets
have different lengths, TensorFlow has the needed functions
in order to bring them all to the same length. To choose
a good value for the length we have built a histogram to
see for each training the distribution of the lengths. The
maximum allowed length for a URL was determined for both
tokenization methods. The URLs that are shorter than this
length will be padded at the beginning with the value 0. The
URLs that are longer than this length will be truncated by
eliminating values from the beginning.

The final input and output shapes for each layer are shown
in Table II. The model trained on the dataset NLP Train
(containing URLs encoded at word level) is called NLP Model
and the model trained on the dataset Raw Train (containing
URLs encoded at character level) is called Raw Model. The
batch size for both architectures is 2000. The maximum length
of a word-level encoded URL is 250 and for character-level
encoded URL is 1000. Each word is mapped to an embedding
vector having 128 elements and each character is mapped to an
64-elements vector. The output vector of the LSTM network
has 64 elements for each URL, regardless of the codification
method.

V. EXPERIMENTAL RESULTS

A neural network having the proposed architecture was
implemented for each URL codification method. The develop-
ment was done using Keras with TensorFlow as the backend.
The two approaches to detect malicious web requests are
evaluated on the test dataset received from the Cyber Security
experts.

A. Evaluation measures

The models are evaluated by the standard metrics listed
below: TP (True Positive) represents the number of real

Fig. 5. Evaluation results on the test set

malicious web requests that were correctly detected as attacks
by the model; TN (True Negative) is the number of normal
web requests that are correctly identified as not malicious; FP
(False Positive) shows the number of normal web requests that
are incorrectly identified as malicious; FN represents the num-
ber of malicious requests that are classified as normal. Based
on these four metrics we calculate: BinaryAccuracy =

TP+TN
TP+TN+FP+FN ; Precision = TP

TP+FP ; Recall = TP
TP+FN

and F1−measure = 2∗Precision∗Recall
Precision+Recall .

Figure 5 compares binary accuracy, precision, recall and
F1-measure for the two models and the Baseline one. The
Baseline Model was used by the company to block IP ad-
dresses that send malicious web requests. Its architecture was
not published by the company. The proposed models obtained
similar values for the enumerated metrics, the Raw model
slightly outperforms the NLP model. The recall metric has
the lowest values, this measures how often a malicious request
was detected as such.

A 90% precision means that for every 10 detected attacks,
one of them is a false positive, a legitimate request that was
blocked. This clearly affects the usability of the provided web
services, users can send by mistake URLs containing special
characters that make them to be classified as malicious. At the
cost of blocking some legitimate users, many truly malicious
requests will be blocked. The cost of a successful injection
attack is much greater and it can cause a lot of harm to the
company.

B. Timing performance

The trained models are used in real-time to detect anoma-
lies, in consequence it is important to have a small prediction
time. The API processes a web request only if the model
classifies it as not being malicious. The Table III shows
the wall time needed by the two models to perform certain
tasks. All tasks were executed on a computer having the
hardware specification: Intel Core i9-7920X CPU, 128GB
Physical System Memory and 4 NVIDIA GeForce RTX 2080
Ti GPU.

TABLE III
WALL TIME FOR DIFFERENT TASKS PERFORMED BY THE MODELS

Task NLP Model Raw Model
Train 1 batch (2000 examples) 0.94 s 4.00 s

Train 1 Epoch 539 s 6 715 s

Make 1 prediction 0.20 ms 0.62 ms

Preprocess 1 URL 0.16 ms 0.00 ms

Encode 1 URL 0.02 ms 0.02 ms

Total time to make 1 prediction 0.38 ms 0.64 ms

The first two tasks are related to the offline training. Training
a model on a batch of character-level encoded URLs is more
than 4 times slower than training a model on a batch of word-
level encoded URLs. This is due to the fact that word-level
codification is significantly shorter than the other. Also, the
time to complete a training epoch is greater for the Raw Model
because the dataset Raw Train is significantly larger than NLP
Train.

The last row of Table III shows the total wall time to
make a prediction about a URL, including preprocessing
and encoding. The NLP model is 1.7 times faster than the
Raw Model, even if the Raw Model does not require any
preprocessing operations.

VI. CONCLUSION

This paper presents two solutions to defend high performing
APIs against injection attacks. The APIs are used by a large
scale company that operates globally. Cyber Security experts
provided large-volume files containing labelled URLs. The
large volume was due to the high variety of web requests that
the APIs handle. The main difference between the proposed
methods consists in the tokenization strategy that is used. The
first method converts the URL to a format similar to natural
language, resulting a list of words. The conversion algorithm
is original and it was designed to be very general in order
to be used for APIs that are handling very diverse requests,
also it puts emphasis on capturing information specific to
injection attacks. Each word is mapped to an integer ID and
this mapping is used to encode each URL to a numerical
format. The second method does not apply any preprocessing
operation. In this case each character is mapped to an integer
ID to convert the URL into a numerical format.

The datasets obtained by these tokenization strategies were
used to train two neural networks that incorporate the powerful
LSTM network. Both resulted models achieve 96% accuracy,
this demonstrates that LSTM can be successfully used to detect
web requests that contain injection attacks. Also, the models
obtained a higher accuracy than the baseline model.

For the future work the imbalance of the data will be
exploited for a better value of precision and recall, for instance
by lowering the 0.5 threshold over which a request is classified
as malicious, trying different values for the class weights or
using focal loss from RetinaNet. Furthermore, other types
of Recurrent Neural Networks will be incorporated into the
architecture to test their efficiency.

REFERENCES

[1] UK Crown Prosecution Service, Cybercrime - prosecution guidance,
https://www.cps.gov.uk/legal-guidance/cybercrime-prosecution-guidance,
2020-05-30.

[2] J. J. Jaccard and S. Nepal, A survey of emerging threats in cybersecurity,
Journal of Computer and System Sciences, 2014, 80.5: 973-993.

[3] F. Tobias and P. Braun, Model-driven testing of restful apis, Proceedings
of the 24th International Conference on World Wide Web. 2015.

[4] P. Sanjay, Pro RESTful APIs, Apress, 2017.
[5] D. Min, F. Li, G. Zheng and V. Srikumar, Deeplog: Anomaly detection

and diagnosis from system logs through deep learning, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[6] J. Schmidhuber and S. Hochreiter, Long short-term memory. Neural
Computation, 9(8), 1735-1780, 1997.

[7] S. Lu, X. Wei, Y. Li and L. Wang, Detecting anomaly in big data system
logs using convolutional neural network, 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 2018.

[8] W. Xu, L. Huang, A. Fox, D. Patterson and M. I. Jordan Detecting large-
scale system problems by mining console logs, In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, 2009.

[9] C. Bertero, M. Roy, C. Sauvanaud and G. Trédanet, Experience re-
port: Log mining using natural language processing and application to
anomaly detection, 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2017.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean, Distributed
representations of words and phrases and their compositionality, In
Advances in neural information processing systems, 2013.

[11] V. Sowmya, H. Surana, A. Gupta and B. Majumder, Practical Natural
Language Processing, O’Reilly Media Inc, 2020.

[12] D. Sarkar, R. Bali and T. Sharma, Practical machine learning with
python - A Problem-Solvers Guide To Building Real-World Intelligent
Systems, Berkely: Apress, 2018.

[13] A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems,
O’Reilly Media, 2019.

[14] G. E. Hinton, N. Srivastava, A. Krizhevsky et al. Improving neural
networks by preventing co-adaptation of feature detectors, arXiv preprint
arXiv:1207.0580, 2012.

